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EXECUTING A DISTRIBUTED JAVA
APPLICATION ON A PLURALITY OF
COMPUTE NODES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for executing a
distributed JAVA application on a plurality of compute nodes.

2. Description of Related Art

The development of the EDVAC computer system of 1948
is often cited as the beginning of the computer era. Since that
time, computer systems have evolved into extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
software components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances in semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the
hardware, resulting in computer systems today that are much
more powerful than just a few years ago.

Parallel computing is an area of computer technology that
has experienced advances. Parallel computing is the simulta-
neous execution of the same task (split up and specially
adapted) on multiple processors in order to obtain results
faster. Parallel computing is based on the fact that the process
of'solving a problem usually can be divided into smaller tasks,
which may be carried out simultaneously with some coordi-
nation.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer is com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/O’) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because it is faster to per-
form some kinds of large computing tasks via a parallel
algorithm than it is via a serial (non-parallel) algorithm,
because of the way modern processors work. It is far more
difficult to construct a computer with a single fast processor
than one with many slow processors with the same through-
put. There are also certain theoretical limits to the potential
speed of serial processors. On the other hand, every parallel
algorithm has a serial part and so parallel algorithms have a
saturation point. After that point adding more processors does
not yield any more throughput but only increases the over-
head and cost.

Parallel algorithms are designed also to optimize one more
resource the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and
bus cycles and also serializes some portion of the algorithm.
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Message passing processing uses high-speed data commu-
nications networks and message buffers, but this communi-
cation adds transfer overhead on the data communications
networks as well as additional memory need for message
buffers and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it is the parallel algorithm that decides the
volume of the traffic.

Many data communications network architectures are used
for message passing among nodes in parallel computers.
Compute nodes may be organized in a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes in
a three-dimensional mesh with wrap around links. Every
node is connected to its six neighbors through this torus
network, and each node is addressed by its x,y,z coordinate in
the mesh. A torus network lends itself to point to point opera-
tions. Ina tree network, the nodes typically are connected into
a binary tree: each node has a parent, and two children (al-
though some nodes may only have zero children or one child,
depending on the hardware configuration). In computers that
use a torus and a tree network, the two networks typically are
implemented independently of one another, with separate
routing circuits, separate physical links, and separate mes-
sage buffers. A tree network provides high bandwidth and low
latency for certain collective operations, message passing
operations where all compute nodes participate simulta-
neously, such as, for example, an allgather.

The parallel applications that execute on the nodes in the
data communications networks may be implemented in a
variety of software programming languages, including the
various versions and derivatives of JAVA™ technology pro-
mulgated by Sun Microsystems. JAVA applications generally
run in a virtual execution environment called the JAVA Virtual
Machine (‘JVM”), rather than running directly on the com-
puter hardware. The JAVA application is typically compiled
into byte-code form, and then compiled in a just-in-time
(‘JIT”) manner, or on-the-fly, by the JVM into JIT code rep-
resenting hardware commands specific to the hardware plat-
form on which the JVM is installed.

In a parallel computer, the JAVA application is generally a
distributed application that is composed of multiple jobs;
each job is typically implemented using one or more JAVA
classes. Because the jobs are typically designed in a modular
fashion, each job may be utilized in more than one JAVA
application. The JVMs on the compute nodes of the parallel
computer provide an execution environment for the jobs that
make up a JAVA application. The execution performance of a
particular job may vary from one JVM to another because
each JVM may have different execution environment set-
tings. Accordingly, executing a job on a compute node with a
JVM that is not optimized for a particular job wastes valuable
computing resources.

SUMMARY OF THE INVENTION

Methods, systems, and products are disclosed for execut-
ing a distributed JAVA application on a plurality of compute
nodes. The JAVA application includes a plurality of jobs
distributed among the plurality of compute nodes. The plu-
rality of compute nodes are connected together for data com-
munications through a data communication network. Each of
the plurality of compute nodes has installed upon it a JAVA
Virtual Machine (‘JVM”) capable of supporting at least one
job of the JAVA application. Executing a distributed JAVA
application on a plurality of compute nodes includes: track-
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ing, by an application manager, JVM environment variables
for the JVMs installed on the plurality of compute nodes; and
configuring, by the application manager, the plurality of jobs
for execution on the plurality of compute nodes in depen-
dence upon the JVM environment variables for the JVMs
installed on the plurality of compute nodes.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary system for executing a
distributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention.

FIG. 2 sets forth a block diagram of an exemplary compute
node useful in a parallel computer capable of executing a
distributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention.

FIG. 3A illustrates an exemplary Point To Point Adapter
useful in systems capable of executing a distributed JAVA
application on a plurality of compute nodes according to
embodiments of the present invention.

FIG. 3B illustrates an exemplary Global Combining Net-
work Adapter useful in systems capable of executing a dis-
tributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention.

FIG. 4 sets forth a line drawing illustrating an exemplary
data communications network optimized for point to point
operations useful in systems capable of executing a distrib-
uted JAVA application on a plurality of compute nodes in
accordance with embodiments of the present invention.

FIG. 5 sets forth a line drawing illustrating an exemplary
data communications network optimized for collective
operations useful in systems capable of executing a distrib-
uted JAVA application on a plurality of compute nodes in
accordance with embodiments of the present invention.

FIG. 6 sets forth a block diagram illustrating an exemplary
system useful in executing a distributed JAVA application on
aplurality of compute nodes according to embodiments of the
present invention.

FIG. 7 sets forth a flow chart illustrating an exemplary
method for executing a distributed JAVA application on a
plurality of compute nodes according to embodiments of the
present invention.

FIG. 8 sets forth a flow chart illustrating a further exem-
plary method for executing a distributed JAVA application on
aplurality of compute nodes according to embodiments of the
present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and computer program
products for executing a distributed JAVA application on a
plurality of compute nodes according to embodiments of the
present invention are described with reference to the accom-
panying drawings, beginning with FIG. 1. FIG. 1 illustrates
an exemplary system for executing a distributed JAVA appli-
cation on a plurality of compute nodes according to embodi-
ments of the present invention. The system of FIG. 1 includes
a parallel computer (100), non-volatile memory for the com-
puter in the form of data storage device (118), an output
device for the computer in the form of printer (120), and an
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4

input/output device for the computer in the form of computer
terminal (122). Parallel computer (100) in the example of
FIG. 1 includes a plurality of compute nodes (102).

The compute nodes (102) are coupled for data communi-
cations by several independent data communications net-
works including a Joint Test Action Group (‘JTAG”) network
(104), a global combining network (106) which is optimized
for collective operations, and a torus network (108) which is
optimized point to point operations. The global combining
network (106) is a data communications network that
includes data communications links connected to the com-
pute nodes so as to organize the compute nodes as a tree. Each
data communications network is implemented with data com-
munications links among the compute nodes (102). The data
communications links provide data communications for par-
allel operations among the compute nodes of the parallel
computer. The links between compute nodes are bi-direc-
tional links that are typically implemented using two separate
directional data communications paths.

In addition, the compute nodes (102) of parallel computer
are organized into at least one operational group (132) of
compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes is
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Such an
operational group may include all the compute nodes in a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ is an example of a collective operation for moving
data among compute nodes of an operational group. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. An opera-
tional group may be implemented as, for example, an MPI
‘communicator.

‘MPI refers to ‘Message Passing Interface,” a prior art
parallel communications library, a module of computer pro-
gram instructions for data communications on parallel com-
puters. Examples of prior-art parallel communications librar-
ies that may be improved for use with systems according to
embodiments of the present invention include MPI and the
‘Parallel Virtual Machine’ (‘PVM”) library. PVM was devel-
oped by the University of Tennessee, The Oak Ridge National
Laboratory, and Emory University. MPI is promulgated by
the MPI Forum, an open group with representatives from
many organizations that define and maintain the MPI stan-
dard. MPI at the time of this writing is a de facto standard for
communication among compute nodes running a parallel pro-
gram on a distributed memory parallel computer. This speci-
fication sometimes uses MPI terminology for ease of expla-
nation, although the use of MPI as such is not a requirement
or limitation of the present invention.

Some collective operations have a single originating or
receiving process running on a particular compute node in an
operational group. For example, in a ‘broadcast’ collective
operation, the process on the compute node that distributes
the data to all the other compute nodes is an originating
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process. In a ‘gather’ operation, for example, the process on
the compute node that received all the data from the other
compute nodes is a receiving process. The compute node on
which such an originating or receiving process runs is
referred to as a logical root.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. The interfaces for these collective operations are
defined in the MPI standards promulgated by the MPI Forum.
Algorithms for executing collective operations, however, are
not defined in the MPI standards. In a broadcast operation, all
processes specify the same root process, whose buffer con-
tents will be sent. Processes other than the root specify receive
buffers. After the operation, all buffers contain the message
from the root process.

In a scatter operation, the logical root divides data on the
root into segments and distributes a different segment to each
compute node in the operational group. In scatter operation,
all processes typically specify the same receive count. The
send arguments are only significant to the root process, whose
buffer actually contains sendcount*N elements of a given
data type, where N is the number of processes in the given
group of compute nodes. The send buffer is divided and
dispersed to all processes (including the process on the logi-
cal root). Each compute node is assigned a sequential identi-
fier termed a ‘rank.” After the operation, the root has sent
sendcount data elements to each process in increasing rank
order. Rank O receives the first sendcount data elements from
the send buffer. Rank 1 receives the second sendcount data
elements from the send buffer, and so on.

A gather operation is a many-to-one collective operation
that is a complete reverse of the description of the scatter
operation. That is, a gather is a many-to-one collective opera-
tion in which elements of a datatype are gathered from the
ranked compute nodes into a receive butfer in a root node.

A reduce operation is also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specify the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
puter node send buffers to the root process. In a reduction
operation, data elements from corresponding send buffer
locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element in the root
process’s receive buffer. Application specific reduction
operations can be defined at runtime. Parallel communica-
tions libraries may support predefined operations. MPI, for
example, provides the following pre-defined reduction opera-
tions:

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical and

MPI_BAND bitwise and

MPI_LOR logical or

MPI_BOR bitwise or

MPI_LXOR logical exclusive or

MPI_BXOR bitwise exclusive or

In addition to compute nodes, the parallel computer (100)
includes input/output (‘1/0’) nodes (110, 114) coupled to
compute nodes (102) through the global combining network
(106). The compute nodes in the parallel computer (100) are
partitioned into processing sets such that each compute node
in a processing set is connected for data communications to
the same /O node. Each processing set, therefore, is com-
posed of one I/O node and a subset of compute nodes (102).

10

15

20

25

30

35

40

45

50

55

60

65

6

The ratio between the number of compute nodes to the num-
ber of /O nodes in the entire system typically depends on the
hardware configuration for the parallel computer. For
example, in some configurations, each processing set may be
composed of eight compute nodes and one /O node. In some
other configurations, each processing set may be composed of
sixty-four compute nodes and one I/O node. Such example
are for explanation only, however, and not for limitation. Each
1/0 nodes provide I/O services between compute nodes (102)
of’its processing set and a set of /O devices. In the example of
FIG. 1, the I/O nodes (110, 114) are connected for data
communications [/O devices (118, 120, 122) through local
area network (LAN'") (130) implemented using high-speed
Ethernet.

The parallel computer (100) of FIG. 1 also includes a
service node (116) coupled to the compute nodes through one
of the networks (104). Service node (116) provides services
common to pluralities of compute nodes, administering the
configuration of compute nodes, loading programs into the
compute nodes, starting program execution on the compute
nodes, retrieving results of program operations on the com-
puter nodes, and so on. Service node (116) runs a service
application (124) and communicates with users (128) through
a service application interface (126) that runs on computer
terminal (122).

In the example of FIG. 1, the service node (116) has
installed upon it an application manager (125). The applica-
tion manager (125) of FIG. 1 includes a set of computer
program instructions capable of executing a distributed JAVA
application on a plurality of compute nodes according to
embodiments of the present invention. The JAVA application
includes a plurality of jobs distributed among the plurality of
compute nodes (102) for execution. The application manager
(125) operates generally for executing a distributed JAVA
application on a plurality of compute nodes according to
embodiments of the present invention by: tracking JVM envi-
ronment variables for the JVMs installed on the plurality of
compute nodes (102); and configuring the plurality ofjobs for
execution on the plurality of compute nodes (102) in depen-
dence upon the JVM environment variables for the JVMs
installed on the plurality of compute nodes (102). Although
FIG. 1 illustrates the application manager (125) installed on a
service node, readers will note that such an example is for
explanation only and not for limitation. An application man-
ager is a software component that may be installed on any
compute nodes or other computer as will occur to those of
skill in the art.

JVM environment variables represent settings for a par-
ticular JVM that affect the JVM’s operation. JVM environ-
ment variables may include a JVM’s minimum and maximum
heap sizes, page size options, debug trace status, and so on. A
JVM’s heap is a storage area for the JAVA objects instantiated
from JAVA classes, which form a typical job. Page size refers
to the size of a contiguous block of virtual memory that is
generally mapped to a frame in a page table. A frame is a
contiguous block of physical memory used to store informa-
tion. Debug trace is a debugging tool for a JVM that logs the
execution of a set of computer program instructions.

Each compute node (102) of FIG. 1 has installed upon it a
JAVA Virtual Machine (‘JVM”) (200) capable of supporting a
JAVA application. Each JVM (200) of FIG. 1 includes a set of
computer program instructions capable of executing a distrib-
uted JAVA application on a plurality of compute nodes
according to embodiments of the present invention. Each
JVM (200) operates generally for executing a distributed
JAVA application on a plurality of compute nodes according
to embodiments of the present invention by: identifying the
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JVM environment variables for that JVM (200); and provid-
ing the identified JVM environment variables to the applica-
tion manager (125).

In the example of FIG. 1, the plurality of compute nodes
(102) are implemented in a parallel computer (100) and are
connected together using a plurality of data communications
networks (104, 106, 108). The point to point network (108) is
optimized for point to point operations. The global combining
network (106) is optimized for collective operations.
Although executing a distributed JAVA application on a plu-
rality of compute nodes according to embodiments of the
present invention is described above in terms of executing a
distributed JAVA application on a parallel computer, readers
will note that such an embodiment is for explanation only and
not for limitation. In fact, executing a distributed JAVA appli-
cation on a plurality of compute nodes according to embodi-
ments of the present invention may be implemented using a
variety of computer systems composed of a plurality of nodes
network-connected together, including for example a cluster
of nodes, a distributed computing system, a grid computing
system, and so on.

The arrangement of nodes, networks, and I/O devices mak-
ing up the exemplary system illustrated in FIG. 1 are for
explanation only, not for limitation of the present invention.
Data processing systems capable of executing a distributed
JAVA application on a plurality of compute nodes according
to embodiments of the present invention may include addi-
tional nodes, networks, devices, and architectures, not shown
in FI1G. 1, as will occur to those of skill in the art. Although the
parallel computer (100) in the example of FIG. 1 includes
sixteen compute nodes (102), readers will note that parallel
computers capable of executing a distributed JAVA applica-
tion on a plurality of compute nodes according to embodi-
ments of the present invention may include any number of
compute nodes. In addition to Ethernet and JTAG, networks
in such data processing systems may support many data com-
munications protocols including for example TCP (Transmis-
sion Control Protocol), IP (Internet Protocol), and others as
will occur to those of skill in the art. Various embodiments of
the present invention may be implemented on a variety of
hardware platforms in addition to those illustrated in FIG. 1.

Executing a distributed JAVA application on a plurality of
compute nodes according to embodiments of the present
invention may be generally implemented on a parallel com-
puter that includes a plurality of compute nodes, among other
types of exemplary systems. In fact, such computers may
include thousands of such compute nodes. Each compute
node is in turn itself a kind of computer composed of one or
more computer processors, its own computer memory, and its
own input/output adapters. For further explanation, therefore,
FIG. 2 sets forth a block diagram of an exemplary compute
node (152) useful in a parallel computer capable of executing
a distributed JAVA application on a plurality of compute
nodes according to embodiments of the present invention.

The compute node (152) of FIG. 2 includes one or more
computer processors (164) as well as random access memory
(‘RAM’) (156). The processors (164) are connected to RAM
(156) through a high-speed memory bus (154) and through a
bus adapter (194) and an extension bus (168) to other com-
ponents of the compute node (152). Stored in RAM (156) is a
job (158) of a JAVA application distributed across the nodes
of the parallel computer. The job (158) is a module of com-
puter program instructions, typically represented in byte
code, that carries out parallel, user-level data processing
using one or more JAVA classes.

Also stored in RAM (156) is an application manager (125).
The application manager (125) of FIG. 2 includes a set of
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computer program instructions capable of executing a distrib-
uted JAVA application on a plurality of compute nodes
according to embodiments of the present invention. The
application manager (125) operates generally for executing a
distributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention by: track-
ing JVM environment variables for the JVMs installed on the
plurality of compute nodes and configuring the plurality of
jobs for execution on the plurality of compute nodes in depen-
dence upon the JVM environment variables for the JVMs
installed on the plurality of compute nodes.

Also stored in RAM (156) is a network monitor (201) that
monitors the utilization of each of the nodes and the data
communication networks connecting the nodes together. The
network monitors on the compute nodes communicate with
one another to keep all of the nodes and any service nodes
informed about the state of the individual nodes and the
networks. In addition, the network monitor (201) may be used
to facilitate the exchange of JVM environment variables
between the JVMs installed on the compute nodes and the
application manager (125). To facilitate such communica-
tions each network monitor may register with the application
manager (125) and expose and interface to the JVM through
which the JVM can update the application manager (125)
with the JIVM’s environment variables. In such a manner, the
network monitor (201) may serve a ‘local client” for the
application manager (125) on each of the nodes.

Also stored in RAM (156) is a JVM (200). The JTVM (200)
of FIG. 2 is a set of computer software programs and data
structures which implements a virtual execution environment
for a specific hardware platform. The JVM (200) of FIG. 2
accepts the JAVA application (158) for execution in a com-
puter intermediate language, commonly referred to as JAVA
byte code, which is a hardware-independent compiled form
of the JAVA application (158). In such a manner, the JVM
(200) of FIG. 2 serves to abstract the compiled version of the
JAVA application (158) from the hardware of node (152)
because the JVM (200) handles the hardware specific imple-
mentation details of executing the application (158) during
runtime. Abstracting the hardware details of a platform from
the compiled form of a JAVA application allows the applica-
tion to be compiled once into byte code, yet run on a variety
of hardware platforms.

The JVM (200) of FIG. 2 is improved for executing a
distributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention. The JVM
(200) of FIG. 2 operates generally for executing a distributed
JAVA application on a plurality of compute nodes according
to embodiments of the present invention by: identifying the
JVM environment variables for that JVM (200) and providing
the identified JVM environment variables to the application
manager (125).

Also stored RAM (156) is a messaging module (161), a
library of computer program instructions that carry out par-
allel communications among compute nodes, including point
to point operations as well as collective operations. The JAVA
application (158) effects data communications with other
applications running on other compute nodes by calling soft-
ware routines in the messaging modules (161). A library of
parallel communications routines may be developed from
scratch for use in systems according to embodiments of the
present invention, using a traditional programming language
such as the C programming language, and using traditional
programming methods to write parallel communications rou-
tines. Alternatively, existing prior art libraries may be used
such as, for example, the ‘Message Passing Interface’ (‘MPI”)
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library, the ‘Parallel Virtual Machine’ (‘PVM”) library, and
the Aggregate Remote Memory Copy Interface (‘(ARMCT’)
library.

Also stored in RAM (156) is an operating system (162), a
module of computer program instructions and routines for an
application program’s access to other resources of the com-
pute node. It is typical for an application program and parallel
communications library in a compute node of a parallel com-
puter to run a single thread of execution with no user login and
no security issues because the thread is entitled to complete
access to all resources of the node. The quantity and com-
plexity of tasks to be performed by an operating system on a
compute node in a parallel computer therefore are smaller and
less complex than those of an operating system on a serial
computer with many threads running simultaneously. In addi-
tion, there is no video I/O on the compute node (152) of FIG.
2, another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down version as it were, or an
operating system developed specifically for operations on a
particular parallel computer. Operating systems that may use-
fully be improved, simplified, for use in a compute node
include UNIX™, Linux™, Microsoft Vista™, ATX™, [BM’s
15/0S™ and others as will occur to those of skill in the art.

The exemplary compute node (152) of FIG. 2 includes
several communications adapters (172, 176, 180, 188) for
implementing data communications with other nodes of a
parallel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as USB, through data communications networks
such as IP networks, and in other ways as will occur to those
of skill in the art. Communications adapters implement the
hardware level of data communications through which one
computer sends data communications to another computer,
directly or through a network. Examples of communications
adapters useful in systems for executing a distributed JAVA
application on a plurality of compute nodes according to
embodiments of the present invention include modems for
wired communications, Ethernet (IEEE 802.3) adapters for
wired network communications, and 802.11b adapters for
wireless network communications.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
Gigabit Ethernet (174). Gigabit Ethernet is a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
Gigabit Ethernet is a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 includes a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG is the usual name used for the
IEEE 1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan. JTAG is so
widely adapted that, at this time, boundary scan is more or
less synonymous with JTAG. JTAG is used not only for
printed circuit boards, but also for conducting boundary scans
of integrated circuits, and is also useful as a mechanism for
debugging embedded systems, providing a convenient “back
door” into the system. The example compute node of FIG. 2
may be all three of these: It typically includes one or more
integrated circuits installed on a printed circuit board and may
be implemented as an embedded system having its own pro-
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cessor, its own memory, and its own /O capability. JTAG
boundary scans through JTAG Slave (176) may efficiently
configure processor registers and memory in compute node
(152) for use in executing a distributed JAVA application on a
plurality of compute nodes according to embodiments of the
present invention.

The data communications adapters in the example of FIG.
2 includes a Point To Point Adapter (180) that couples
example compute node (152) for data communications to a
network (108) that is optimal for point to point message
passing operations such as, for example, a network config-
ured as a three-dimensional torus or mesh. Point To Point
Adapter (180) provides data communications in six direc-
tions on three communications axes, X, y, and z, through six
bidirectional links: +x (181), —x (182), +y (183), -y (184), +z
(185), and -z (186).

The data communications adapters in the example of FIG.
2 includes a Global Combining Network Adapter (188) that
couples example compute node (152) for data communica-
tions to a network (106) that is optimal for collective message
passing operations on a global combining network config-
ured, for example, as a binary tree. The Global Combining
Network Adapter (188) provides data communications
through three bidirectional links: two to children nodes (190)
and one to a parent node (192).

Example compute node (152) includes two arithmetic
logic units (‘ALUs’). ALU (166) is a component of processor
(164), and a separate ALU (170) is dedicated to the exclusive
use of Global Combining Network Adapter (188) for use in
performing the arithmetic and logical functions of reduction
operations. Computer program instructions of a reduction
routine in parallel communications library (160) may latch an
instruction for an arithmetic or logical function into instruc-
tion register (169). When the arithmetic or logical function of
areduction operation is a ‘sum’ or a ‘logical or,” for example,
Global Combining Network Adapter (188) may execute the
arithmetic or logical operation by use of ALU (166) in pro-
cessor (164) or, typically much faster, by use dedicated ALU
(170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA’) controller (195), which is
computer hardware for direct memory access and a DMA
engine (195), which is computer software for direct memory
access. Direct memory access includes reading and writing to
memory of compute nodes with reduced operational burden
on the central processing units (164). A DMA transfer essen-
tially copies a block of memory from one compute node to
another. While the CPU may initiates the DMA transfer, the
CPU does not execute it. In the example of FIG. 2, the DMA
engine (195) and the DMA controller (195) support the mes-
saging module (161).

For further explanation, FIG. 3A illustrates an exemplary
Point To Point Adapter (180) useful in systems capable of
executing a distributed JAVA application on a plurality of
compute nodes according to embodiments of the present
invention. Point To Point Adapter (180) is designed for use in
a data communications network optimized for point to point
operations, a network that organizes compute nodes in a
three-dimensional torus or mesh. Point To Point Adapter
(180) in the example of FIG. 3A provides data communica-
tion along an x-axis through four unidirectional data commu-
nications links, to and from the next node in the —x direction
(182) and to and from the next node in the +x direction (181).
Point To Point Adapter (180) also provides data communica-
tion along a y-axis through four unidirectional data commu-
nications links, to and from the next node in the —y direction
(184) and to and from the next node in the +y direction (183).
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Point To Point Adapter (180) in FIG. 3A also provides data
communication along a z-axis through four unidirectional
data communications links, to and from the next node in the
-z direction (186) and to and from the next node in the +z
direction (185).

For further explanation, FIG. 3B illustrates an exemplary
Global Combining Network Adapter (188) useful in systems
capable of executing a distributed JAVA application on a
plurality of compute nodes according to embodiments of the
present invention. Global Combining Network Adapter (188)
is designed for use in a network optimized for collective
operations, a network that organizes compute nodes of a
parallel computer in a binary tree. Global Combining Net-
work Adapter (188) in the example of FIG. 3B provides data
communication to and from two children nodes through four
unidirectional data communications links (190). Global
Combining Network Adapter (188) also provides data com-
munication to and from a parent node through two unidirec-
tional data communications links (192).

For further explanation, FIG. 4 sets forth a line drawing
illustrating an exemplary data communications network
(108) optimized for point to point operations useful in sys-
tems capable of executing a distributed JAVA application on a
plurality of compute nodes in accordance with embodiments
of the present invention. In the example of FIG. 4, dots rep-
resent compute nodes (102) of a parallel computer, and the
dotted lines between the dots represent data communications
links (103) between compute nodes. The data communica-
tions links are implemented with point to point data commu-
nications adapters similar to the one illustrated for example in
FIG. 3A, with data communications links on three axes, X, y,
and z, and to and fro in six directions +x (181), —x (182), +y
(183), —y (184), +z (185), and -z (186). The links and com-
pute nodes are organized by this data communications net-
work optimized for point to point operations into a three
dimensional mesh (105). The mesh (105) has wrap-around
links on each axis that connect the outermost compute nodes
in the mesh (105) on opposite sides of the mesh (105). These
wrap-around links form part of a torus (107). Each compute
node in the torus has a location in the torus that is uniquely
specified by a set of X, y, Z coordinates. Readers will note that
the wrap-around links in the y and z directions have been
omitted for clarity, but are configured in a similar manner to
the wrap-around link illustrated in the x direction. For clarity
of'explanation, the data communications network of FIG. 4 is
illustrated with only 27 compute nodes, but readers will rec-
ognize that a data communications network optimized for
point to point operations for use in executing a distributed
JAVA application on a plurality of compute nodes in accor-
dance with embodiments of the present invention may con-
tain only a few compute nodes or may contain thousands of
compute nodes.

For further explanation, FIG. 5 sets forth a line drawing
illustrating an exemplary data communications network
(106) optimized for collective operations useful in systems
capable of executing a distributed JAVA application on a
plurality of compute nodes in accordance with embodiments
of the present invention. The example data communications
network of FIG. 5 includes data communications links con-
nected to the compute nodes so as to organize the compute
nodes as a tree. In the example of FIG. 5, dots represent
compute nodes (102) of a parallel computer, and the dotted
lines (103) between the dots represent data communications
links between compute nodes. The data communications
links are implemented with global combining network adapt-
ers similar to the one illustrated for example in FIG. 3B, with
each node typically providing data communications to and
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from two children nodes and data communications to and
from a parent node, with some exceptions. Nodes in a binary
tree (106) may be characterized as a physical root node (202),
branch nodes (204), and leafnodes (206). The root node (202)
has two children but no parent. The leaf nodes (206) each has
a parent, but leaf nodes have no children. The branch nodes
(204) each has both a parent and two children. The links and
compute nodes are thereby organized by this data communi-
cations network optimized for collective operations into a
binary tree (106). For clarity of explanation, the data commu-
nications network of FIG. 5 is illustrated with only 31 com-
pute nodes, but readers will recognize that a data communi-
cations network optimized for collective operations for use in
systems for executing a distributed JAVA application on a
plurality of compute nodes in accordance with embodiments
of the present invention may contain only a few compute
nodes or may contain thousands of compute nodes.

In the example of FIG. 5, each node in the tree is assigned
a unit identifier referred to as a ‘rank’ (250). A node’s rank
uniquely identifies the node’s location in the tree network for
use in both point to point and collective operations in the tree
network. The ranks in this example are assigned as integers
beginning with 0 assigned to the root node (202), 1 assigned
to the first node in the second layer of the tree, 2 assigned to
the second node in the second layer of the tree, 3 assigned to
the first node in the third layer of the tree, 4 assigned to the
second node in the third layer of the tree, and so on. For ease
ofillustration, only the ranks of the first three layers of the tree
are shown here, but all compute nodes in the tree network are
assigned a unique rank.

For further explanation, FIG. 6 sets forth a block diagram
illustrating an exemplary system useful in executing a distrib-
uted JAVA application (601) on a plurality of compute nodes
(6004a) according to embodiments of the present invention.
The JAVA application (601) of FIG. 6 includes a plurality of
jobs (158) distributed among the plurality of compute nodes
(600). Each compute node (600) has installed upon it a JVM
(200) capable of supporting at least one job (158) of the JAVA
application (601).

The nodes (600) of FIG. 6 are connected together for data
communications using a data communication network. In
addition, the nodes (600) are connected to an I/O node (110)
that provides 1/O services between the nodes (600) and a set
of 1/0 devices such as, for example, the service node (116)
and the data storage (118). The service node (116) of FIG. 6
provides services common to nodes (600), administering the
configuration of nodes (600), loading programs such as JAVA
application (601) and JVM (200) onto the nodes (600), start-
ing program execution on the nodes (600), retrieving results
of'program operations on the nodes (600), and so on. The data
storage (118) of FIG. 6 may store the files that contain the
JAVA classes that compose the JAVA application (601).

The service node (116) has installed upon it an application
manager (125). The application manager (125) includes a set
of computer program instructions capable of executing a dis-
tributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention. The
application manager (125) operates generally for executing a
distributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention by: track-
ing JVM environment variables (652) for the JVMs (200)
installed on the plurality of compute nodes (600) and config-
uring the plurality of jobs (158) for execution on the plurality
of compute nodes (600) in dependence upon the JVM envi-
ronment variables (652) for the JVMs (200) installed on the
plurality of compute nodes (600). In such a manner, the appli-
cation manager (125) may configure a job (158) of the appli-
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cation (601) for execution on a compute node (600) that has
JVM environment variables that match optimal or desired
JVM environment variables specified by an application pro-
file (603) for the application (601).

In the example of FIG. 6, the application profile (603) of
FIG. 6 is a data structure used by the application manager
(125) that associates desired JVM environment variables with
various jobs (158) of the application (601). The application
profile (603) may be formatted as a text file, a table, a struc-
tured document, or any other format as will occur to those of
skill in the art. In addition to using the application profile
(603) to configure jobs (158) on the nodes (600), the appli-
cation manager (125) may also be used to assign desired JVM
environment variables to the various jobs (158) of application
(601) in the application profile (603). The application man-
ager (125) may assign desired JVM environment variables to
the various jobs (158) of application (601) based on user-
specified environmental settings for the various jobs (158) of
the application (601) or based on a historic execution perfor-
mance for the various jobs (158) of the application (601).

In the example of FIG. 6, the application manager (125)
configures job (158a) on compute node (6004a) for execution
based on the JVM environment variables (652a) for the JIVM
(200) on node (600a). To execute the job (158a), the IVM
(200) of FIG. 6 includes a JIT compiler (618) and JIT code
executor (654). The JIT compiler (618) compiles the byte
code representation of job (158a) into machine code to be run
directly on the native platform and optimizes the machine
code for enhanced performance. The JIT compiler (618) is
typically invoked when the job (158aq) is started up or when
some other usage criterion is met to improve run-time perfor-
mance by avoiding the need for this code to be interpreted
later. The output from the JIT compiler (618) is JIT code
(616), which is in turn provided into the JIT code executor
(654) for execution on the platform’s processor.

The JIT compiler (618) operates by spawning a compila-
tion thread that receives the byte-code version of the job
(158a), translates and optimizes the byte code into native
code, and feeds the native code to an execution thread for the
JIT code executor (654). After processing various portions of
the job (158a), the JIT compiler (618) examines the portions
of'the job (158a) executed by the JIT code executor (654). The
JIT compiler (618) may monitor how the JIT code executor
(654) executed the job (158a) to determine any further opti-
mizations that would enhance future execution performance.
For example, if portions of the job (1584a) are consistently
being skipped during execution, the JIT compiler (618) may
not process those skipped portions in the future. Similarly, if
portions of the job (158a) are being executed repeatedly, the
JIT compiler (618) attempt to further optimize those heavily
executed portions.

In the example of FIG. 6, the JVM (200) is improved for
executing a distributed JAVA application on a plurality of
compute nodes according to embodiments of the present
invention. The JVM (200) operates generally for executing a
distributed JAVA application on a plurality of compute nodes
according to embodiments of the present invention by: iden-
tifying the JVM environment variables (652) for that JVM
(200) and providing the identified JVM environment vari-
ables (652) to the application manager (125). The JVM (200)
may communicate with the application manager (125)
through the network monitor (201). The application manager
(125) may then in turn utilize the JVM environment variables
(652) received from each of the JVMs supporting the jobs
(158) to configure the jobs (158) in the future on the nodes
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(600) having a JVM with environment variables that match
the desired, or optimal, JVM environment variables for those
jobs (158).

The job (158a) of the application (601) often represents
any number of JAVA classes. As the JVM (200) executes the
job (158a), the JVM identifies a JAVA class utilized for the
job (158a), loads the JAVA classes for the job (1584) into
memory, and prepares each class instance for execution. The
JVM (200) therefore includes a hierarchy of class loaders
(620) that operate to load the classes specified by the job
(158a). The hierarchy of class loaders (620) includes a pri-
mordial class loader (622), an extension class loader (624),
and an application class loader (626).

The primordial class loader (622) of FIG. 6 loads the core
JAVA libraries, such as ‘core.jar,” ‘server.jar, and so on, in the
‘<JAVA_HOME>/1ib’ directory. The primordial class loader
(622), which is part of the core JVM, is written in native code
specific to the hardware platform on which the JVM is
installed. The extension class loader (624) of FIG. 6 loads the
code in the extensions directories and is typically imple-
mented by the ‘sun.misc.Launcher$ExtClassLoader’ class.
The application class loader (626) of FIG. 6 loads the class
specified by ‘java.class.path,” which maps to the system
‘CLASSPATH?’ variable. The application class loader (626) is
typically implemented by the ‘sun.misc.Launcher$App-
ClassLoader’ class.

For each class included or specified by the job (158a), the
JVM (200) effectively traverses up the class loader hierarchy
to determine whether any class loader has previously loaded
the class. The order of traversal is as follows: first to the
default application class loader (626), then to the extension
class loader (624), and finally to the primordial class loader
(622). If the response from all of the class loaders is negative,
then the JVM (200) traverses down the hierarchy, with the
primordial class loader first attempting to locate the class by
searching the locations specified in its class path definition. If
the primordial class loader (622) is unsuccessful, then the
then the extension class loader (624) may make a similar
attempt to load the class. If the extension class loader (624) is
unsuccessful, then the application class loader (626) attempts
to load the class. Finally, if the application class loader (626)
is unsuccessful, then the JVM (200) triggers an error condi-
tion.

The JVM (200) of FIG. 6 also includes a heap (610), which
is shared between all threads, and is used for storage of
objects (612). Each object (612) represents an already loaded
class. That is, each object (612) is in effect an instantiation of
a class, which defines the object. Because a job may utilize
more than one object of the same type, a single class may be
instantiated multiple times to create the objects specified by
the job (158a). Readers will note that the class loaders (620)
are objects that are also stored on heap (610), but for the sake
of clarity the class loaders (620) are shown separately in FIG.
6.

In the example of FIG. 6, the JVM (200) also includes a
class storage area (636), which is used for storing information
relating to the classes stored in the heap (610). The class
storage area (636) includes a method code region (638) for
storing byte code for implementing class method calls, and a
constant pool (640) for storing strings and other constants
associated with a class. The class storage area (636) also
includes a field data region (642) for sharing static variables,
which are shared between all instances of a class, and a static
initialization area (646) for storing static initialization meth-
ods and other specialized methods separate from the method
code region (638). The class storage area also includes a
method block area (644), which is used to stored information



US 9,086,924 B2

15

relating to the code, such as invokers, and a pointer to the
code, which may for example be in method code area (638),
in JIT code area (616) described above, or loaded as native
code such as, for example, a dynamic link library (‘DLL’)
written in C or C++.

A class stored as an object (612) in the heap (610) contains
areference to its associated data, such as method byte code, in
class storage area (636). Each object (612) contains a refer-
ence to the class loader (620), which loaded the class into the
heap (610), plus other fields such as a flag to indicate whether
or not they have been initialized.

In the example of FIG. 6, the JVM (200) also includes a
stack area (614), which is used for storing the stacks associ-
ated with the execution of different threads on the JVM (200).
Readers will note that because the system libraries and indeed
parts of the JVM (200) itself are written in JAVA, which
frequently utilize multi-threading, the JVM (200) may be
supporting multiple threads even if the job (158a) contains
only a single thread.

Also included within JVM (200) of FIG. 6 is a class loader
cache (634) and garbage collector (650). The former is typi-
cally implemented as a table that allows a class loader to trace
those classes which it initially loaded into the JVM (200). The
class loader cache (634) therefore allows each class loader
(620) to determine whether it has already loaded a particular
class when the JVM (200) initially traverses the class loader
hierarchy as described above. Readers will note that it is part
of the overall security policy of the JVM (200) that classes
will typically have different levels of permission within the
system based on the identity of the class loader by which they
were originally loaded.

The garbage collector (650) is used to delete objects (612)
from heap (610) when they are no longer required. Thus in the
JAVA programming language, applications do not need to
specifically request or release memory, rather this is con-
trolled by the JVM (200) itself. Therefore, when the job
(158a) specifies the creation of an object (612), the JVM
(200) secures the requisite memory resource. Then, when the
job (158a) finishes using object (612), the JVM (200) can
delete the object (612) to free up this memory resource. This
process of deleting an object is known as ‘garbage collection,’
and is generally performed by briefly interrupting all threads
on the stack (614), and scanning the heap (610) for objects
(612) which are no longer referenced, and therefore can be
deleted. The details of garbage collection vary from one JVM
(200) implementation to another, but typically garbage col-
lection is scheduled when the heap (610) is nearly exhausted
and so there is a need to free up space for new objects (612).

In the example of FIG. 6, the JVM (200) also includes a
monitor pool (648). The monitor pool (648) is used to store a
set of locks or ‘monitors’ that are used to control contention to
an object resulting from concurrent attempts to access the
object by different threads when exclusive access to the object
is required.

Although the JVM (200) in FIG. 6 is shown on and
described above with regard to the node (600a), readers will
note that each of the other nodes (60056) also has installed
upon it a JVM configured in a similar manner. That is, each of
the other nodes (6005) also has installed upon it a JVM
capable of executing a distributed JAVA application on a
plurality of compute nodes according to embodiments of the
present invention.

For further explanation, FIG. 7 sets forth a flow chart
illustrating an exemplary method for executing a distributed
JAVA application (601) on a plurality of compute nodes (600)
according to embodiments of the present invention. The JAVA
application (601) includes a plurality ofjobs (158) distributed
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among the plurality of compute nodes (600). The plurality of
compute nodes (600) connected together for data communi-
cations through a data communication network. Each of the
plurality of compute nodes (600) has installed upon it a JVM
capable of supporting at least one job (158) of the JAVA
application (601).

The method of FIG. 7 includes tracking (700), by an appli-
cation manager, a JVM environment variables (652) for the
JVMs installed on the plurality of compute nodes. The appli-
cation manager may track (700) a JVM environment vari-
ables (652) for the JVMs installed on the plurality of compute
nodes according to the method of FIG. 7 by receiving the
JVM environment variables (652) from each of the JVMs
installed on the compute nodes (600). The application man-
ager may receive the JVM environment variables (652) as
each JVM transmit its JVM environment variables (652) peri-
odically to the application manager. In some other embodi-
ments, however, the application manager may periodically
poll each JVM for the JVM environment variables (652). The
application manager and the JVMs may communicate
directly with one another or through some intermediary com-
munications facilitator such as, for example, a network moni-
tor.

The JVM environment variables (652) of FIG. 7 represent
settings for a particular JVM that affect the JVM’s operation.
The JVM environment variables (652) may include a JVM’s
minimum and maximum heap sizes, page size options, debug
trace status, and so on. For further explanation, consider the
following exemplary JVM environment variables provided
by one of the JVMs installed on the nodes (600):

TABLE 1

EXEMPLARY JVM ENVIRONMENT VARIABLES

VARIABLE IDENTIFIER VARIABLE VALUE
Minimum Heap Size 4 MB
Maximum Heap Size 1024 MB

Page Size 4 MB

Debug Trace Status Disabled
Share Class Data Enabled

JIT Optimization Enabled
Verify Heap Integrity Enabled

Background JIT Compilation Enabled

The exemplary JVM environment variables in Table 1
above specify that the minimum heap size is four megabytes
(MB) and the maximum heap size is one thousand twenty-
four MB for the JVM. The exemplary JVM environment
variables also specifies that JVM’s page size is four MB and
the Debug Trace Status for the JVM is disabled. The exem-
plary JVM environment variables specify that the JVM shares
class data when possible and that JIT compilation optimiza-
tions are enabled. The exemplary JVM environment variables
also specify that the JVM’s heap integrity verification is
enabled along with the JVM’s option to perform JIT compi-
lation in the background. Readers will note that the exem-
plary JVM environment variables above are for explanation
only and not for limitation.

The method of FIG. 7 also includes configuring (702), by
the application manager, the plurality of jobs (158) for execu-
tion on the plurality of compute nodes (600) in dependence
upon the JVM environment variables (652) for the JVMs
installed on the plurality of compute nodes (600). The appli-
cation manager configures (702) the plurality of jobs (158)
for execution on the plurality of compute nodes (600) accord-
ing to the method of FIG. 7 by performing (704) for at least
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one job (158) of the JAVA application (601): selecting (706),
for that job, one of the compute nodes (600) on which to
execute that job (158) in dependence upon the JVM environ-
ment variables (652) for the JVMs and at least one desired
JVM environment variable (707) for that job (158); and con-
figuring (710) that job (158) on the selected compute node
(708) for execution.

The desired JVM environment variables (707) of FIG. 7
represent user-specified JVM environment variables for each
job (158) of the JAVA application (601). The desired JVM
environment variables (707) may be specified in an applica-
tion profile for the application (601) that is provided by a
system administrator or application developer. For example,

consider the following exemplary application profile:
TABLE 2
EXEMPLARY APPLICATION PROFILE
JOB
IDENTIFIER  VARIABLE IDENTIFIER VARIABLE VALUE

0 Minimum Heap Size 4 MB
0 Maximum Heap Size 1024 MB
0 Page Size 4 MB
0 Debug Trace Status Disabled
0 Share Class Data Enabled
0 JIT Optimization Enabled
0 Verify Heap Integrity Disabled
0 Background JIT Compilation Enabled
1

The exemplary application profile in Table 2 above speci-
fies that the desired minimum heap size is four MB and the
desired maximum heap size is one thousand twenty-four MB
for job 0. The exemplary application profile also specifies that
desired page size for job 0 is four MB and the desired Debug
Trace Status for the job O is disabled. The exemplary appli-
cation profile specifies that, ideally for job 0, the JVM shares
class data when possible and that JIT compilation optimiza-
tions are enabled. The exemplary application profile does
specify that the JVM’s heap integrity verification should be
disabled for job 0, but that JVM’s option to perform JIT
compilation in the background should be enabled for job 0.
Readers will note that the exemplary application profile
above is for explanation only and not for limitation.

In the method of FIG. 7, the application manager may
select (706) one of the compute nodes (600) on which to
execute a particular job (158) by comparing the JVM envi-
ronment variables (652) received from each of the JVMs with
the desired JVM environment variables (707) for the particu-
lar job (158) and selecting the node (708) having the JVM
environment variables (652) that best matches the desired
JVM environment variables (707) for the particular job (158).
The application manager may identify the best match as the
compute node having the highest number of JVM environ-
ment variables (652) that match the desired JVM environ-
ment variables (707). For example, consider that the applica-
tion manager may configure a job on node 0 or node 1. Further
consider that node 0 provides the application manager with
the exemplary JVM environment variables in Table 1 above
and that node 1 provides the application manager with the
following exemplary JVM environment variables:
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TABLE 3

EXEMPLARY JVM ENVIRONMENT VARIABLES

VARIABLE IDENTIFIER VARIABLE VALUE
Minimum Heap Size 1 MB
Maximum Heap Size 512 MB

Page Size 1 MB

Debug Trace Status Enabled

Share Class Data Disabled

JIT Optimization Disabled
Verify Heap Integrity Disabled

Background JIT Compilation Disabled

When comparing the desired JVM environment variables
for job 0 in Table 2 with the exemplary JVM environment
variables in Tables 1 for node 0 and in Table 3 for node 1, the
application manager determines that node 0 has the highest
number of JVM environment variables that match the desired
JVM environment variables for job 0. Specifically, node O has
seven JVM environment variables that match the desired
JVM environment variables for job 0, while node 1 does not
have any JVM environment variables that match the desired
JVM environment variables for job 0.

Readers will note that selecting the node (708) having the
JVM environment variables (652) that best matches the
desired JVM environment variables (707) for the particular
job (158) in the manner described above is for explanation
only and not for limitation. In some other embodiments, the
application manager may select the best match by taking into
account the degree to which the JVM environment variables
for a node match the desired JVM environment variables for
a job in addition to the overall number of JVM environment
variables for a node match the desired JVM environment
variables. Still further, the application manager may select the
best match by taking into weights for each type of JVM
environment variable because some variables may be more
important that others. Moreover, readers will note that select-
ing the node (708) having the JVM environment variables
(652) that best matches the desired JVM environment vari-
ables (707) for the particular job (158) may be carried out in
other ways as will occur to those of skill in the art.

After selecting (706) the node (708) on which to execute a
particular job, the application manager may configure (710)
that job (158) on the selected compute node (708) for execu-
tion according to the method of FIG. 7 by instructing a service
node to write the particular job into computer memory of the
selected node (708) and instructing the service node to in turn
instruct the selected node (708) to begin executing the par-
ticular job (158) through that node’s JVM. Although the
configuring above occurs through a service node, readers will
note that in some embodiments the application manager may
itself provide the job to the selected node (708) and instruct
the compute node to begin execution.

As described above, in some embodiments, an application
manager tracks JVM environment variables for the JVMs
installed on the compute nodes by receiving the JVM envi-
ronment variables from each of the JVMs on the nodes. In
such embodiments, the JVMs installed on the nodes record
their individual JVM environment variables for reporting to
the application manager. For further explanation, therefore,
consider FIG. 8 that sets forth a flow chart illustrating a
further exemplary method for executing a distributed JAVA
application on a plurality of compute nodes according to
embodiments of the present invention.

The method of FIG. 8 includes identifying (800), by each
JVM supporting at least one job of the JAVA application on
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the plurality of compute nodes, the JVM environment vari-
ables (652) for that JVM. Each JVM may identify (800) the
JVM environment variables (652) for that JVM according to
the method of FIG. 8 by logging in the JVM’s environment
variables (652) in a table, text file, JAVA object, or some other
data structure as will occur to those of skill in the art.

The method of FIG. 8 includes providing (802), by each
JVM supporting at least one job of the JAVA application on
the plurality of compute nodes, the identified JVM environ-
ment variables (652) to the application manager (125). Each
JVM may provide (802) the identified JVM environment
variables (652) to the application manager (125) according to
the method of FIG. 8 by transmitting the identified JVM
environment variables (652) directly to the application man-
ager (125) across a data communications network. In other
embodiments, each JVM may provide (802) the identified
JVM environment variables (652) to the application manager
(125) according to the method of FIG. 8 by passing the
identified JVM environment variables (652) to a network
monitor installed on the node with the JVM. The network
monitor may then pass the identified JVM environment vari-
ables (652) to the application manager (125) across a data
communications network. In such a manner, the network
monitor serves as a ‘local client’ for the application manager
(125) on the node with the JVM. Upon receiving the JVM
environment variables (652), the application manager (125)
may then utilize the JVM environment variables (652) to
configure jobs of a JAVA application on the plurality of nodes
for execution according to embodiments of the present inven-
tion discussed above with reference to FIG. 7.

Exemplary embodiments of the present invention are
described largely in the context ofa fully functional computer
system for executing a distributed JAVA application on a
plurality of compute nodes. Readers of skill in the art will
recognize, however, that the present invention also may be
embodied in a computer program product disposed on com-
puter readable media for use with any suitable data processing
system. Such computer readable media may be transmission
media or recordable media for machine-readable informa-
tion, including magnetic media, optical media, or other suit-
able media. Examples of recordable media include magnetic
disks in hard drives or diskettes, compact disks for optical
drives, magnetic tape, and others as will occur to those of skill
in the art. Examples of transmission media include telephone
networks for voice communications and digital data commu-
nications networks such as, for example, Ethernets™ and
networks that communicate with the Internet Protocol and the
World Wide Web as well as wireless transmission media such
as, for example, networks implemented according to the
IEEE 802.11 family of specifications. Persons skilled in the
art will immediately recognize that any computer system
having suitable programming means will be capable of
executing the steps of the method of the invention as embod-
ied in a program product. Persons skilled in the art will
recognize immediately that, although some of the exemplary
embodiments described in this specification are oriented to
software installed and executing on computer hardware, nev-
ertheless, alternative embodiments implemented as firmware
or as hardware are well within the scope of the present inven-
tion.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.
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What is claimed is:

1. A method of executing a distributed application on a
plurality of compute nodes, the application comprising a
plurality of jobs distributed among the plurality of compute
nodes, the plurality of compute nodes connected together for
data communications through a data communication net-
work, each of the plurality of compute nodes having installed
upon it a Virtual Machine (‘VM”) capable of supporting at
least one job of the application, the method comprising:

tracking, by an application manager, VM environment

variables for the VMs installed on the plurality of com-
pute nodes; and

configuring, by the application manager, the plurality of

jobs for execution on the plurality of compute nodes in
dependence upon the VM environment variables for the
VMs installed on the plurality of compute nodes.

2. The method of claim 1 wherein configuring, by the
application manager, the plurality of jobs for execution on the
plurality of compute nodes in dependence upon the VM envi-
ronment variables for the VMs installed on the plurality of
compute nodes further comprises performing for at least one
job of the application:

selecting, for that job, one of the compute nodes on which

to execute that job in dependence upon the VM environ-
ment variables for the VMs installed on the plurality of
compute nodes and at least one desired VM environment
variable for that job; and

configuring that job on the selected compute node for

execution.

3. The method of claim 1 wherein the VM environment
variables further comprise minimum and maximum heap
sizes.

4. The method of claim 1 wherein the VM environment
variables further comprise page size options.

5. The method of claim 1 wherein the VM environment
variables further comprise debug trace status.

6. The method of claim 1 further comprising:

identifying, by each VM supporting at least one job of the

application on the plurality of compute nodes, the VM
environment variables for that VM, and

providing, by each VM supporting at least one job of the

application on the plurality of compute nodes, the iden-
tified VM environment variables to the application man-
ager.

7. The method of claim 1 wherein executing a distributed
application on a plurality of compute nodes further comprises
executing a distributed application on a parallel computer, the
parallel computer comprising the plurality of compute nodes
and a service compute node, the application manager
installed upon the service compute node, the plurality of
compute nodes connected for data communications through a
plurality of data communications networks, at least one data
communications network optimized for collective opera-
tions, and at least one other data communications network
optimized for point to point operations.

8. A computing system capable of executing a distributed
application on a plurality of compute nodes, the application
comprising a plurality of jobs distributed among the plurality
of compute nodes, the plurality of compute nodes connected
together for data communications through a data communi-
cation network, each of the plurality of compute nodes having
installed upon it a Virtual Machine (‘VM’) capable of sup-
porting at least one job of the application, the computing
system comprising one or more computer processors and
computer memory operatively coupled to the computer pro-
cessors, the computer memory having disposed within it
computer program instructions capable of:
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tracking, by an application manager, VM environment
variables for the VMs installed on the plurality of com-
pute nodes; and

configuring, by the application manager, the plurality of

jobs for execution on the plurality of compute nodes in
dependence upon the VM environment variables for the
VMs installed on the plurality of compute nodes.

9. The computing system of claim 8 wherein configuring,
by the application manager, the plurality of jobs for execution
onthe plurality of compute nodes in dependence upon the VM
environment variables for the VMs installed on the plurality
of compute nodes further comprises performing for at least
one job of the application:

selecting, for that job, one of the compute nodes on which

to execute that job in dependence upon the VM environ-
ment variables for the VMs installed on the plurality of
compute nodes and at least one desired VM environment
variable for that job; and

configuring that job on the selected compute node for

execution.

10. The computing system of claim 8 wherein the VM
environment variables further comprise minimum and maxi-
mum heap sizes.

11. The computing system of claim 8 wherein the VM
environment variables further comprise page size options.

12. The computing system of claim 8 wherein the computer
memory has disposed within it computer program instruc-
tions capable of:

identifying, by each VM supporting at least one job of the

application on the plurality of compute nodes, the VM
environment variables for that VM, and

providing, by each VM supporting at least one job of the

application on the plurality of compute nodes, the iden-
tified VM environment variables to the application man-
ager.

13. A computer program product for executing a distrib-
uted application on a plurality of compute nodes, the appli-
cation comprising a plurality of jobs distributed among the
plurality of compute nodes, the plurality of compute nodes
connected together for data communications through a data
communication network, each of the plurality of compute
nodes having installed upon it a Virtual Machine (‘VM”)
capable of supporting at least one job of the application, the
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computer program product disposed upon a computer read-
able recordable medium, the computer program product com-
prising computer program instructions capable of:

tracking, by an application manager, VM environment

variables for the VMs installed on the plurality of com-
pute nodes; and

configuring, by the application manager, the plurality of

jobs for execution on the plurality of compute nodes in
dependence upon the VM environment variables for the
VMs installed on the plurality of compute nodes.

14. The computer program product of claim 13 wherein
configuring, by the application manager, the plurality of jobs
for execution on the plurality of compute nodes in depen-
dence upon the VM environment variables for the VMs
installed on the plurality of compute nodes further comprises
performing for at least one job of the application:

selecting, for that job, one of the compute nodes on which

to execute that job in dependence upon the VM environ-
ment variables for the VMs installed on the plurality of
compute nodes and at least one desired VM environment
variable for that job; and

configuring that job on the selected compute node for

execution.

15. The computer program product of claim 13 wherein the
VM environment variables further comprise minimum and
maximum heap sizes.

16. The computer program product of claim 13 wherein the
VM environment variables further comprise page size
options.

17. The computer program product of claim 13 wherein the
VM environment variables further comprise debug trace sta-
tus.

18. The computer program product of claim 13 further
comprising computer program instructions capable of:

identifying, by each VM supporting at least one job of the

application on the plurality of compute nodes, the VM
environment variables for that VM, and

providing, by each VM supporting at least one job of the

application on the plurality of compute nodes, the iden-
tified VM environment variables to the application man-
ager.



